The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Tuesday, July 8, 2014

The biology and control of surface overhealing

Lesions of “surface overhealing” include keloid, hypertrophic scar, and burn scar. All are characterized by overabundant collagen deposition. The biology of these lesions is reviewed, suggesting that abnormal collagen metabolism results from alterations in the inflammatory/immune response. Practical and theoretical treatment plans are outlined based on methods that alter collagen metabolism, the inflammatory/immune system or rely on physical alterations (surgery, pressure).
http://www.springerlink.com/content/3g2mr5r32m438125/

Post-sympathectomy neuralgia is proposed here to be a complex neuropathic and central deafferentation/reafferentation syndrome

http://www.ncbi.nlm.nih.gov/pubmed/8867242

Monday, July 7, 2014

peripheral sympathectomy causes a dramatic increase in NGF levels in the denervated organs

Increased Nerve Growth Factor Messenger RNA and Protein

Peripheral NGF mRNA and protein levels following
sympathectomy
It has been shown previously that peripheral sympathectomy
causes a dramatic increase in NGF levels in the denervated
organs
 (Yap et al., 1984; Kanakis et al., 1985; Korsching and
Thoenen, 1985).
Increased ,&Nerve Growth Factor Messenger RNA and Protein
Levels in Neonatal Rat Hippocampus Following Specific Cholinergic
Lesions
Scott R. Whittemore,” Lena Liirkfors,’ Ted Ebendal,’ Vicky R. Holets, 2,a Anders Ericsson, and HBkan Persson
Departments of Medical Genetics and’ Zoology, Uppsala University, S-751 23 Uppsala, Sweden, and *Department of
Histology, Karolinska Institute, S-104 01 Stockholm, Sweden

The sympathoadrenal system is one of the major pathways mediating physiological responses in the organism

The sympathoadrenal system is one of the major pathways mediating physiological responsesin the organism. The sympathoadrenal system plays an important role in the regulation of blood pressure, glucose, sodium and other key physiological and metabolic processes. In many disease states, the sympathoadrenal system is affected and by corrective physiological responses the sympathoadrenal system preserves homeostasis. Many therapeutic agents are either adrenergic activators or inhibitors. Therefore, measurements of the components of the sympathoadrenal system and the activity of the sympathoadrenal system have been of major interest for decades.
Levels of plasma (p-) noradrenaline (NA), the sympathetic neurotransmitter, have been used to indicate activity of the neuronal sympathoadrenal component, while adrenaline (Adr) levels indicate activity of the hormonal adrenomedullary component of the sympathoadrenal system (Christensen 1991, Goldstein 1995, Christensen & Norsk 2000).
Based upon the absence of an arterio-venous increase in p-DOPA concentration in sympathectomized limbs and a decrease in p-DOPA after inhibition of tyrosine hydroxylase (TH) in dogs, it was concluded that DOPA can pass across sympathetic neuronal membranes to reach the general circulation and furthermore, that p-DOPA may be related to regional rate of tyrosine hydroxylation (Goldstein et al 1987a). P-DOPA only demonstrated minimal changes during stimuli that produced significant changes in p-NA. Due to partly parallel changes of p-NA and p-DOPA, however, it was believed that p-DOPA reflect the rate of catecholamine synthesis and that p-DOPA was a simple and direct index of TH activity in vivo (Eisenhofer et al 1988, Goldstein & Eisenhofer 1988, Garty et al 1989b). It was inferred that p-DOPA levels may be an index of sympathetic activity.
Department of Internal Medicine and Endocrinology, Herlev University Hospital, Herlev.
Correspondence: Ebbe Eldrup, Bolbrovænge 29, DK-2960 Rungsted Kyst.
Official opponents: Jens H. Henriksen, professor, MD, and Jan Abrahamsen, MD.
Dan Med Bull 2004;51:34-62.